logo #APACHydrogenSummit 30 Nov – 2 Dec 2021

Sustainable Energy Council Announces World Hydrogen Advisory Board of Industry Leaders

Wednesday 16 June 2021

London, UK – The London-based sustainable events, business council and training provider has published the initial group of senior decision makers from global companies in the energy and hydrogen industry, who will be a guiding force behind the SEC World Hydrogen Series of Events.

In line with the recent and much-needed global momentum towards low carbon hydrogen energy, the Sustainable Energy Council enlisted the group of leaders to give focus to the World Hydrogen Event Series proceedings to ensure that key industry challenges and opportunities are addressed, enabling participants to take relevant, informed decisions which will drive further collaboration and accelerate the hydrogen industry roll-out world-wide.

The founding members of the SEC World Hydrogen Advisory board are:

Hydrogen is widely seen as a key element in the global race towards Net Zero. The Sustainable Energy Council World Hydrogen series of events bring together governments and companies across the entire supply chain to enhance global partnerships and ensure hydrogen plays a pivotal role in the energy transition.

Allard Castelein, President & CEO, Port of Rotterdam said: “The energy transition is a fascinating journey. Finding the best route towards a net zero economy, we have to learn from one another and set up new partnerships. Rotterdam has the ambition to become Europe’s largest hydrogen hub, and it is my pleasure to participate in this Advisory Board.”

Paul Bogers, Vice President – Hydrogen, Royal Dutch Shell: “As hydrogen continues to rapidly accelerate into the mainstream of the energy sector, it is now critical that everyone in the industry comes together in order to help create the conditions for the successful delivery of a global hydrogen market. At Shell this means continuing to work with our peers across the industry, which is why I am delighted to become a founding member of the SEC World Hydrogen Advisory board. I am excited to get to work with my fellow board members to drive the conversation forward and help hydrogen play its role in reaching net zero emissions globally.”

Andrew Horvath, Global Group Chairman, Star Scientific Limited said: “Star Scientific is honoured to be invited to join this prestigious board. It is welcome recognition of our Hydrogen Energy Release Optimiser, or HERO, which companies and governments around the world are recognising as the missing link in the demand case for hydrogen deployment, without combustion, for industrial heating and energy purposes. We are also proud to be asked to bring the Australasian perspective to the Sustainable Energy Council’s deliberations on hydrogen.”

Jorgo Chatzimarkakis, Secretary General, Hydrogen Europe said: “I am honoured to be a founding member of the SEC World Hydrogen Advisory Board among such esteemed experts in the field. Hydrogen Europe is committed to provide a significant contribution, bringing together stakeholders from across the whole hydrogen value chain. Our collective efforts will enable meaningful exchanges on the future of the EU energy system and the role of clean hydrogen.”

Max Correa Achurra, Head of the Fuels & New Energy Division, Ministry of Energy, Chile said: “Chile is rich in renewable energies, which combined with our robust institutions, transparent and non-discriminatory regulation, and advanced energy markets, will unlock the potential to produce the cheapest green hydrogen on the planet. To exploit the full potential of this clean energy carrier, we have laid out a National Green Hydrogen Strategy that sets ambitious goals. Attracting international sources of financing for these projects, public-private cooperation and dialogue is key to understand and reduce critical barriers for hydrogen deployment. I look forward to working with the SEC Hydrogen Advisory Board to bring our perspectives to the table and continue enhancing crucial international cooperation.”

Noé van Hulst, Chair at IPHE, Hydrogen Advisor at IEA & Gasunie said: “The global momentum for clean hydrogen is incredibly strong, as we can see from the increasing number of countries with hydrogen strategies and public funding commitments, as well as the private sector investment appetite. What we need now, is the appropriate regulatory framework to scale-up clean hydrogen rapidly and de-risk the huge private investment required. We also need smart policies that aim at creating integrated markets and facilitate the entire value chain across borders, including infrastructure and storage. I am happy to join this advisory board.”

Horst H. Mahmoudi, CEO & Executive Chairman, Smartenergy said: “We are committed to decarbonize. Through our strong engagement in the development and structuring of renewable hydrogen projects we have gained substantial practical experience on how to unleash the potential of green H2 projects and how to overcome the roadblocks. I am thrilled and honoured to be among the founding members of the SEC World Hydrogen Advisory Board.”

David Burns, VP Clean Energy, Linde said: “As the world is shifting toward a new energy system where hydrogen is set to play a key role, it is paramount to create programs that promote the dialogue between industry stakeholders. This is necessary at both a regional and a global level, and in ways that contribute to the creation of a robust knowledge base focused on the many ways hydrogen can help reach the Paris Accord goals. With over 100 years of experience in the field, Linde is well-equipped to support this mission and I am personally very glad to be part of the founding members of the SEC World Hydrogen Advisory Board, along with other well-known leaders in the energy industry.”

Chris Hugall, Managing Director of the Sustainable Energy Council said: “We’re delighted to welcome these leading experts as the founding members of the SEC World Hydrogen Advisory Board. I look forward to working closely with the Board ensuring SEC continues to deliver highly relevant, solution-focused programmes facilitating international collaboration and access to the latest hydrogen information and business opportunities.”

Find out more about the SEC World Hydrogen Advisory Board and its members here: https://www.sustainableenergycouncil.com/hydrogen-advisory-board/


Notes to Editors:

About the Sustainable Energy Council
The Sustainable Energy Council is the world-leading events producer, business council and training provider for the sustainable energy and infrastructure industries. Our close relationships with 60+ Governments worldwide, as well as an extensive network of industry stakeholders, make us the trusted partner of choice for the global sustainable energy industry. More information https://www.sustainableenergycouncil.com/

Shearman & Sterling: Hydrogen – Is It the Answer to Clean Energy?

In July, Neom Company, Air Products and ACWA Power announced an agreement to develop the World’s first green hydrogen-based megaproject –a US$5billion facility located at Neom, Saudi Arabia’s city of the future.

You can also download this article in its original PDF here. 

In this article we highlight the fast-growing commercial opportunity that green hydrogen presents, and financing structures that can be used to facilitate investment in projects capable of exporting this new energy source. The article explores how existing hydrocarbon supply chains can be adapted for green hydrogen going forward, and why it is therefore an attractive industry for energy players to diversify into.

The project will comprise the world’s largest electrolysis facility by far—2GW—and will produce green hydrogen-based ammonia for export to global markets. Air Products will be the exclusive offtake of the green ammonia and intends to transport it around the world to be dissociated to produce green hydrogen for the transportation market. The transition from a hydrocarbon-based global energy market to zero-carbon alternatives is accelerating faster than many have expected. Green hydrogen is increasingly being recognized as a cornerstone of this evolution. The cost of production is falling while demand rises as energy importers worldwide position hydrogen as a key fuel of the 21st century industrial economy.

In a political declaration on 15 June 2020, seven European energy ministers committed to “enable a forward-looking European hydrogen infrastructure and liquid market in the near future,” while recognizing the importance of a timely scale-up to create a global renewable hydrogen market.

Days earlier, the German government had released a comprehensive National Hydrogen Strategy. Adopting the motto “shipping the sunshine” and based on the principle that only hydrogen produced on the basis of renewable energies (green hydrogen) is sustainable in the long term, the government’s energy policy assumes that a global and European hydrogen market will develop over the next 10 years and that most of the hydrogen [Germany will need] will have to be imported.

On the other side of the world, in March 2020 Japanese Prime Minister Shinzo Abe, cutting the ribbon for a green hydrogen research facility in Fukushima, said: “I have a firm resolution to make a great change…in the conventional energy frameworks all over the world. Clean hydrogen will become a source of energy for operating manufacturing floors in plants and fuel for various vehicles…. Let’s work together and cultivate a new era of hydrogen to accomplish these goals.”

Now, the world’s first green hydrogen export megaproject has been announced. What does this mean for development of the hydrogen market, and for project development going forward?



Green hydrogen is simply hydrogen, the most abundant element in the universe, produced by processes that are powered entirely by renewable electricity, such as solar and wind power.

The renewable electricity powers an electrolyzer, equipment that combines anode-cathode technology with a chemical catalyst, to split water molecules into hydrogen and oxygen.

The resulting hydrogen gas has the highest energy content of any common fuel by weight. It is manufactured without any emissions, pollutants or greenhouse gases, and emits none when used. The only by-product of the industrial process is oxygen, which is itself marketable or otherwise easily and safely disposed of by release into the atmosphere.

Green hydrogen’s zero-carbon characteristics distinguish it from other forms of reduced carbon hydrogen that form part of ongoing decarbonization efforts. Whereas historically hydrogen has been produced from coal or natural gas, which generates significant carbon emissions and is known respectively as brown and grey hydrogen, there has been increasing interest in blue hydrogen, for which the carbon emissions are captured and stored, or re-used. Green hydrogen removes carbon entirely from the equation.

Hydrogen can be stored in pressurized or liquefied form. Unlike batteries—the current preferred approach to storing renewable power—hydrogen in storage does not deteriorate over time. From storage, hydrogen can be converted back into energy for electricity generation. It can also be used as a feedstock for zero-carbon or reduced-carbon fuels—especially in hard-to-electrify industries such as aviation and freight logistics/shipping—chemicals and fertilizers.

There are many potential markets for green hydrogen, and diverse supply chain options for its delivery. Hydrogen gas can be liquefied and transported in vehicles and vessels, or combined with nitrogen to create green ammonia, a liquid, which opens up even simpler methods of transporting the zero-carbon energy such as bulk shipping. The ships themselves could be powered by ammonia or by hydrogen fuel cells.

Green hydrogen can be easily deployed in existing industrial processes such as refining, petrochemical and metal production. However, when hydrogen production is scaled up, the opportunities become much wider ranging.

According to the International Energy Agency (IEA), hydrogen and ammonia will start to be used together with, or instead of, natural gas and coal in power generation, while hydrogen’s storage capabilities also help mitigate grid-balancing challenges associated with increasing the share in the power mix of weather-dependent sources such as wind and solar power.

The aviation and shipping sectors, which have limited low-carbon fuel options available, represent an opportunity for hydrogen-based fuels to take significant market share. Norway, for example, has just announced Europe’s first commercial green hydrogen aviation project, which will create enough zero-carbon jet fuel to supply its five most popular domestic aviation routes.

The export opportunities are particularly exciting. As the “shipping the sunshine” motto encapsulates, green hydrogen ammonia is the first truly scalable medium, or energy carrier, for the export of one country’s renewable power resources to another country. For regions with abundant solar and wind resources (and land on which to locate them), such as the Middle East, there is an important new role to play in decarbonizing the global economy. The NEOM Company/Air Products/ACWA power project exemplifies the first project to capture this opportunity.

Green hydrogen imports will be attractive to countries that cannot produce renewable energy resources quickly enough, or at all, to meet their decarbonization objectives. In many places, demand for green hydrogen will outstrip the supply of renewable energy needed to produce it, at least for some decades.
For example, according to Hydrogen Europe, an industry association, EU hydrogen demand is forecast to be 16.9 million tons per year by 2030, nearly 75 percent of which will need to be imported from outside the bloc.

In Japan and South Korea, government policy dictates that all hydrogen imports must be carbon-free by 2030, and Japan’s Ministry of Energy, Trade & Industry (METI) expects Japan’s annual consumption of hydrogen to grow from 4,000 tons in 2020 to 300,000 tonnes by 2030 and 5 million–10 million tons by 2050. Japan is already looking at switching from coal and imported LNG to hydrogen for its gas-fired power plants.

IHS Markit has estimated, consistent with findings by the China hydrogen alliance, that hydrogen could constitute 10 percent of China’s energy mix by 2050, contributing to a 65 percent decrease in China’s carbon emissions from 2015 levels.

On the supply side, though, other than the NEOM Company/ACWA Power/Air Products project, there are few projects of sufficient scale currently in operation or under intensive development to meet this rising global demand.

The IEA estimates that less than 0.1 percent of global dedicated hydrogen production today comes from water electrolysis.

Current Electrolyser facilities are smaller than 100MW, 5 percent of the scale of NEOM’s.

There are plans in numerous European countries to create facilities that could be scaled sufficiently to generate exports, and in Western Australia’s Pilbara region there is a proposal for 15GW of solar and wind capacity to supply the local mining industry and provide electricity for hydrogen commodity production through electrolysis.

Future energy presents challenges despite the growing consensus that green hydrogen will be an important part of the future energy mix, and that demand for it will necessitate world-scale production and international trade, getting there will take creativity and dedication. We foresee three challenges that must be addressed:



In order to make the significant capital investments necessary for a world-scale green hydrogen project, investors need confidence that there will be a stable market for its products once it starts operations. For early projects, there will be a chicken-and-egg element to this calculus, as investors balance first-mover advantages against the risk of oversupply.

However, as illustrated by examples throughout this article, we see policy globally as trending inexorably to the development of a market, similar to, and to some extent in place of, LNG, in which green hydrogen will be freely traded.

Moreover, to some extent, green hydrogen projects will have inherent risk mitigation built in, because of their dependence on renewable energy project co-development. New electricity capacity intended for powering electrolyzerscan be redirected to grids if the green hydrogen market is slower to develop than expected, or suffers demand volatility, assuming the grid has a need for the redirected power.

We also expect the early investors in green hydrogen projects, such as those in the NEOM Company/ACWA Power/Air Products project, to be major hydrogen/energy industry players, who are capable of judging market risks well, and are capable of deploying green hydrogen resources within a wider product portfolio.



We see well-structured green hydrogen megaprojects as strong candidates for limited recourse project financing, as well as other debt markets.

The zero-carbon nature of the products, and the high demand for them that is expected in countries heavily involved in the export credit financing market, means it is reasonable to expect significant liquidity being available for project financing.

Renewable generation sub-components of green hydrogen projects, like many utilities projects, can also be structured to attract funds investment or facilitate capital markets issuances.

Financing will involve innovative work, though. While electrolysis per se is a well-known industrial process, in the absence of a track record of world-scale projects having successfully operated, there will of course be questions about technology selection and reliability.

We see this as similar to the early years of project financing in other major industries, such as power, LNG and petrochemicals, where lenders gather comfort over time, leading to the emergence of well-understood models for banking projects in various regions of the world.

As with other sectors that integrate different technologies, such as LNG-to-power, for some projects there may also be difficulties in securing a competitive single point construction solution for all the various components, both power and hydrogen/ammonia production, which could give rise to split construction packages, and resulting interface risk that requires structuring to mitigate.



Establishing a route to market for green hydrogen will require capital investment to build new, or retrofit existing hydrocarbon focused, land and sea freight carriers, liquefaction/regasification facilities, as well as pipelines.

As we understand it, this is not necessarily technically difficult, but presents a further risk for early players in the new market.

Due to the extensive additional investment that would be required for the development of new pipeline networks, we expect that the early green hydrogen projects will rely heavily on sea transportation—not dissimilar to the LNG market—enabling producers to reach a broader range of customers, most likely large-scale industrial consumers to start with, and reducing upfront investment costs in the supply chain.

We expect that a number of the practical and contractual issues faced in the LNG market, particularly during its early development, to be relevant to the early hydrogen market—e.g.,the need for long-term offtake arrangements with price certainty and a strong offtake.

Pilot and small-scale projects have already begun. For example, in Victoria, Australia, a US$350million plant will ship 5,000 tons of liquefied hydrogen per year to japan, along with 18,000 tons per year of ammonia. It is expected that the pilot phase will demonstrate the integrated supply chain by 2021, with a subsequent investment decision to be made about commercialization.



A question often asked about the development of the green hydrogen export industry is: who will be the first to market?

The NEOM Company/Air Products/ACWA Power project illustrates part of the answer to this question. Renewable power developers and existing hydrogen market players will form joint ventures in parts of the world where renewable electricity resources are abundant and the regulatory and economic environment is facilitative.

We expect traditional energy players also to get involved quickly, to carve out a place in the burgeoning green hydrogen market. National and international oil companies, on both the supply and demand sides of the market, would be natural investors and developers, both because of their deep knowledge of crude hydrocarbon and LNG markets—which may be templates for parts of the green hydrogen supply chain—and because of their existing infrastructure and supply chains.

These historical advantages will reduce the barriers to market for them compared with niche players. Many National Oil Companies (NOCs) and International Oil Companies (IOCs) already have well-advanced hydrogen strategies in place, and those that do not would be well advised to develop a plan for their role in this industry going forward.



Green hydrogen is a serious contender to be one of the replacements for hydrocarbons as the world moves towards sustainable industry, and has the benefit of leveraging existing hydrocarbon infrastructure as it grows.

With governments increasingly promoting green hydrogen and ammonia, we see the industry as replacing petrochemicals and LNG in the megaproject cycle of the 2020s. Early investors from both the supply and demand side of the market can gain an upper hand in the early stages of this exciting new industry.



Dan Feldman
Abu Dhabi
T +971 2 410 8158
Omar Alkaffas
Abu Dhabi
T +971 2 410 8163


Disclaimer: This article first appeared in Project Finance International under the original title ‘Shipping the Sunshine’.

Interview with Alex Tancock of InterContinental Energy

People are no longer asking about IF but WHEN


SEC are pleased to announce the participation of InterContinental Energy as sponsors of the 1st Annual Asia Pacific Hydrogen Summit. Take a look at our sponsor spotlight below, where Managing Director Alex Tancock gives us a preview of what he’ll be sharing with us at the Summit.


SEC: What are your industry expectations for the short/long term?
ALEX TANCOCK: In the short term we expect green hydrogen demand to begin growing rapidly towards the end of this decade, with demand then growing continuously for the foreseeable future. Just as solar and wind power prices became competitive more rapidly than many expected, so we expect green hydrogen powered by such low priced renewables to also become competitive in a faster time frame than many currently expect.

SEC: What do you think needs prioritising for a quicker Hydrogen deployment ?
AT: It feels like hydrogen has reached an inflection point in 2020. People are no longer asking about if, but when. As a result, the full weight of industry and policy makers is now turning towards the plethora of aspects that need to be tackled. It is hard to single out everything that needs to be prioritised, but in terms of supply at least, we have some confidence that the volumes and prices required are deliverable.

SEC: How is your company contributing to the APAC hydrogen economy?
AT: As the largest green hydrogen developer in the APAC region, we are showing the scale of projects that can be developed, which gives confidence to the market that large and affordable supplies will be available. This removes a major uncertainty, and can help underpin longer term and accelerated planning.

“We’re delighted to sponsor the 1st Annual Asia-Pacific Hydrogen Summit, where we will be sharing our experience developing oil and gas scale green hydrogen projects. We look forward to fruitful discussions with potential partners to drive the industry forward.”

Join InterContinental Energy at the Virtual Summit in November and continue the conversation on the future of Hydrogen in the region.

Sustainable Energy Council & the Asia-Pacific Hydrogen Association join forces to organize the 1st Annual Asia-Pacific Hydrogen Summit

Singapore – The Asia-Pacific Hydrogen Association and the Sustainable Energy Council (SEC) have joined forces to organize the 1st Annual Asia-Pacific Hydrogen Summit taking place virtually on 24-26 November 2020.

Article Published on Fuel Cells Works on 20 August 2020 – https://fuelcellsworks.com/news/sustainable-energy-council-and-the-asia-pacific-hydrogen-association-join-forces-to-organize-the-1st-annual-asia-pacific-hydrogen-summit/ 


Sponsored by Intercontinental Energy, The Annual Asia-Pacific Hydrogen Summit is the first regional Summit dedicated to the development of the hydrogen industry in Asia- Pacific. Due to the COVID-19 situation, the Summit will be in virtual format enabling participants to access live sessions and network with industry peers wherever they are.

“Following the success of the World Hydrogen Series launch in Amsterdam during March 2020, we are delighted to partner with APAC Hydrogen Association to deliver The First annual Asia-Pacific Hydrogen Summit full of cutting edge insight and collaboration building bespoke to the region” says the Sustainable Energy Council.

“With the tremendous growth expected for the hydrogen industry in Asia-Pacific and the increasing adaption of hydrogen in the energy and transport sector, the establishment of a regional conference to give companies and industry professionals to gain knowledge and to network is very timely. In addition, we are pleased to extend our co-operation with SEC to organize our first joint conference.” says, Edgare Kerkwijk, board member of the Asia-Pacific Hydrogen Association.

For more information about the Summit, visit https://asia-hydrogen-summit.com/

About Asia Wind Energy Association

The Asia-Pacific Hydrogen Association was established in December 2019 and has been set up to be the leading industry association for the hydrogen sector in Asia-Pacific. The association acts as the regional platform for all stakeholders in the hydrogen industry to collectively promote the best interests of the hydrogen sector.

About Sustainable Energy Council (SEC)

The Sustainable Energy Council (SEC) is a world-leading advisory, events and training producer for a cleaner and more sustainable world. SEC has created the Sustainable Energy Series and World Hydrogen Series, with events designed to enable participants to accelerate their respective actions towards their economic and climate sustainability goals.

Keppel, Mitsubishi Heavy to study hydrogen-powered data centres in Singapore

Original article published on H2View on June 18, 2020
Written by: Joanna Sampson
URL: https://www.h2-view.com/story/keppel-mitsubishi-heavy-to-study-hydrogen-powered-data-centres-in-singapore/

Keppel Data Centres Holding and Mitsubishi Heavy Industries Asia Pacific (MHI-AP) have inked a Memorandum of Understanding (MoU) to jointly explore the implementation of the hydrogen-powered tri-generation plant concept for data centres in Singapore.

Announcing the news today in a joint statement, the two companies will study how a hydrogen-powered tri-generation plant-supported data centre can meet the expanding needs of the digital economy in a safe, reliable and environmentally friendly manner.

As part of the MoU, Keppel Data Centres and MHI-AP will also explore producing hydrogen fuel for the tri-generation plant through the steam methane reforming (SMR) process.

By incorporating carbon capture and storage capabilities, both parties will seek to ensure that the process is carbon neutral.

Wong Wai Meng, CEO of Keppel Data Centres, said, “The exploration of hydrogen infrastructure is part of our strategy to work towards decarbonisation. We are happy to collaborate with Mitsubishi Heavy Industries and tap on their vast experience and technology capabilities in our journey.”

Yoshiyuki Hanasawa, Executive Vice-President and Chief Regional Officer for Asia Pacific and India at Mitsubishi Heavy Industries Group and Managing Director of MHI-AP, added, “Hydrogen will be a key energy carrier in the global effort towards decarbonisation.”

“Mitsubishi Heavy Industries Group has long-term expertise in hydrogen and remains focused on providing reliable and innovative cross-industry solutions aimed at ensuring a smooth energy transition.”

“With Singapore set to become a global data centre hub, we look forward to partnering with Keppel Data Centres to support Singapore in creating a sustainable energy future.”

One of the possible data centre projects that might benefit from the hydrogen powered tri-generation plant concept is the floating data centre park project in Singapore that Keppel Data Centres is currently pursuing.

Data centres are essential infrastructure on which the digital economy runs. Both Keppel Data Centres and MHI-AP are committed to co-creating a sustainable energy future for Singapore, while meeting the needs of the burgeoning digital economy.

© Sustainable Energy Conferences Limited 2021 | View our Privacy Policy